2007: A GRAND CANONICAL MONTE-CARLO STUDY OF H2 ADSORPTION IN PRISTINE AND Li-DOPED CARBON REPLICAS OF FAUJASITE ZEOLITE
نویسندگان
چکیده
The first step of this work was to generate using atomistic simulation, a porous carbon material with an ordered pore network using the faujasite Y zeolite as a templating matrix. For this purpose, we used the Grand Canonical Monte-Carlo (GCMC) technique in which the carbon-carbon interactions were described with reactive bond-order potential assuming the carbonzeolite interactions to be relevant to physisorption. The intrinsic stability of the nanoporous carbon material was then investigated. We also performed a structural analysis of the resulting carbon porous structure including the determination of the pore size distribution. Such a new carbon form has a very ordered porous structure that can be used as a model adsorbent to validate adsorption theory and characterization methods. At a second stage, we calculated for these pristine structures, hydrogen adsorption isotherms at different temperatures with the GCMC technique using ab initio adsorbate-carbon interaction potentials. Although our carbon replicas have an optimum pore size for H2 docking, we demonstrated that they cannot be used as for an efficient storage at room temperature under 300 bars. By contrast, when doped with lithium (LiC6), we found, that room temperature H2 storing become possible: we obtain 4% in weight (37 kg/m) under 300 bars. The origin of these good storing performances is to be found at the atomistic level thanks to the Li to C electron transfer.
منابع مشابه
Boron-substituted graphyne as a versatile material with high storage capacities of Li and H2: a multiscale theoretical study.
Based on density functional theory (DFT), first-principles molecular dynamics (MD), and the grand canonical ensemble Monte Carlo (GCMC) method, we investigated the boron substitution in aromatic rings of graphyne in terms of geometric and electronic structures as well as its bifunctional application including Li and H2 storage. The calculated binding energies of B-doped graphyne (BG) are signif...
متن کاملThe computational study of adsorption of carbon monoxide on pristine and Ge-doped (6,0) zigzag models of BNNTs
The aim of this research is studying the effects of Ge-doped on CO adsorption on the outer and inner surfaces of (6, 0) zigzag model of boron nitride nanotube (BNNTs) by using DFT theory. For this purpose, eight models of CO adsorption on the surfaces of BNNTs are considered. At first step, all structures were optimized at B3LYP and 6-31G (d) standard base set and then the electronic structure,...
متن کاملDFT Study of N-hydroxyurea Adsorption Behavior onto Pristine and Iron-doped Single-walled Carbon Nanotube
The interactions between N-hydroxyurea (NHU) as anticancer drug and SWCNTs (pure and Fe-doped) were investigated with density functional theory. In this study, large long-range corrected CAM-B3LYP and B3LYP were employed to investigate the stability of the different NHU-CNT and NHU/Fe-CNT complexes in the gas phase and solution (water). The presence of an iron atom would create suitable space o...
متن کاملTheoretical study of the interaction of harmful heroin molecule with N-doped TiO2 anatase nanoparticles
Density functional theory calculations were carried out to study the interaction of heroin molecule with pristine and N-dopedTiO2 anatase nanoparticles. The oxygen atom of heroin molecule was found to be the binding site on the heroin molecule. In contrast, the binding site of TiO2 nanoparticle was positioned over the fivefold coordinated titanium atoms. The results showed that the adsorption e...
متن کاملThe DFT Study of Oxygen Adsorption on Pristine and As-Doped of the (4, 4) Armchair Models BNNTs
In this work, the effects of As-doped on the adsorption of oxygen gas on the outer and inner surface ofboron nitride nanotube (BNNTs) is investigated. The structural parameters, quantum properties involving:bond length, bond angle, HOMO-LUMO orbital, gapenergy, electron affinity, electronegativity, chemicalpotential, global hardness, global softness and NMR parameters of BNNTs are calculated at...
متن کامل